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Abstract

A new computer program is being developed for

doing accurate simulations of compressible viscous flows

in complex geometries. The code employes the full
compressible Navier-Stokes equations. The eddy vis-

cosity model of Baldwin and Lomax is used to model
the effects of turbulence on the flow. A cell centered

finite volume discretization is used for all terms in the

governing equations. The Advection Upwind Splitting

Method (AUSM) is used to compute the inviscid fluxes,
while central differencing is used for the diffusive fluxes.

A four-stage Runge-Kutta time integration scheme is

used to march solutions to steady state, while conver-

gence is enhanced by a multigrid scheme, local time-
stepping and implicit residual smoothing. To enable

simulations of flows in complex geometries, the code

uses composite structured grid systems where all grid

lines are continuous at block boundaries (multiblock

grids). Example results are shown a flow in a linear
cascade, a flow around a circular pin extending between

plex geometries can be broadly classified as (a) un-
structured and hybrid structured/unstructured grids

(b) completely discontinuous composite grids (Chimera

grids ) and partially discontinuous composite struc-
tured grids, and (c) multiblock grids--i.e., composite

grids with continuous grid fines at block boundaries

(see Ref. 1 on classification of grid systems). It is
worthwhile to review briefly the advantages and disad-

vantages of each grid structure.

Grid systems in the first category, i.e., unstruc-

tured or hybrid structured/unstructured grids are con-

sidered by many to be the type of grids that will in

the long run become the grid structure of choice for

complex geometries. The reason behind this belief is

that algorithms exist that make the generation of un-
structured grids almost completely automatic, requir-

ing only minimal human intervention. Furthermore,

unstructured grids can relatively easily be made so-

lution adaptive and thus promise high resolution of
small scale features in the computed solutions as well as

the main walls in a high aspect-ratio channel, and a flow the geometries. However, while computations of invis-

of air in a radial turbine coolant passage, cid flows on unstructured grids have met considerable

Introduction

In general, flow solvers that rely on single-block,

boundary conforming, structured grid systems can only

simulate flows in relatively simple geometries. For sim-

ulation of flows in geometries of arbitrary complexity,

alternative grid structures must be used. The grid

structures that have been used in past years for corn-
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success, computation of high Reynolds number viscous

flows has to date only been moderately successful. 2-4

Compared to using unstructured grid, the advan-

tage of using structured grids is that current algorithms

for the Navier-Stokes equations yield better solutions

for high Reynolds number viscous flows on structured,

body-fitted grid systems than on unstructured grids. In

addition, structured flow solvers are typically more effi-
cient than unstructured flow solvers due to the inherent

regularity in the data structures that can be used. How-
ever, the disadvantage of relying on structured grids is

that it has traditionally been a difficult and labor in-

tensive process to generate high quality structured grids
for even moderately complex geometries.

To reduce the difficulty in generating structured

grids for complex geometries some researchers have op-

ted for using completely discontinuous composite grids

(Chimera grids) where the individual grid blocks are al-



lowedto overlapin anarbitrarymanner.However, Us-

ing Chimera grids simply shifts the difficulty in dealing
with the complex geometries from the grid generation

to the flow solver. To deal with the irregularly overlap-

ping grids in the flow solver, complicated interpolation
schemes are needed to accurately transfer data between

blocks. The complexity of the interpolation schemes in-

creases rapidly with the order of accuracy that is used.

At the same time, if the interpolations are not done

with sufficient accuracy, spurious phenomena such as

reflection of waves can be observed in the computed
solutions at interfaces between blocks.

The type of composite structured grid systems

that lead to least complications in flow solvers are the
multiblock grids. Since no interpolations are needed

at the block interfaces in multiblock grids, exchange of

data between blocks is relatively straightforward and

no errors are generated. On the other hand, high qual-

ity multiblock grids have traditionally been the most
difficult and labor intensive to generate. The source

of the difficulty has been a total lack of automation

in generating suitable block structures (topologies) for
complex geometries. Due to this difficulty, reliance on

multiblock grid systems has often been rejected in the

past. Lately, however, several methods and software

have emerged that aid in the decomposition of a com-

plex geometry into blocks or zones in such a manner

that high quality grid systems with good orthogonality
and smoothness can be generated for the entire geome-

try (see, e.g., Fig. 1). 5.8 The emergence of these meth-
ods and software has made multiblock grids a viable

alternative for geometries of arbitrary complexity.

It is the objective of this ongoing research effort

to develop a new computer code that is capable of sim-

ulating flows in complex geometries with high accuracy
and efficiency. To achieve this goal, the decision was

made to employ multiblock grid systems in the code.
The basis for this decision is that the new grid gen-

eration software promises to deliver high quality grid

systems with less human involvement than ever before,

and that high Reynolds number viscous flows are best

computed on body-fitted structured grid systems.

The new multiblock code developed in this study

is derived from an existing flow solver, TRAF3D. 9,10

TRAF3D is a highly efficient single-block, multigrid

flow solver that was written specifically for flows in tur-
bomachinery cascades. Unlike TRAF3D, which uses

central differencing with artificial dissipation for the
convection terms of the governing equations, the new

code uses a recently developed upwind scheme, the Ad-

vection Upwind Splitting Method (AUSM}. 11 The

AUSM scheme is a relatively simple but highly effective

upwind scheme. It is effective in shock capturing while

yielding low artificial dissipation at low Mach numbers,

and it resolves stationary discontinuities exactly.

The remainder of this paper describes the essen-

tial features of the new computer code which will hence-

forth be referred to as TRAF3D.MB. The paper is or-

ganized as follows: Immediately following this intro-
duction, the governing equations used in TRAF3D.MB
and their discretization will be described. Afterwards,

the time stepping scheme and convergence accelera-

tion techniques that are employed will be briefly dis-
cussed. Then, the multiblock strategy employed in
TRAF3D.MB will be described in some detail. Finally,

results from sample calculations will be presented. The

paper ends with some concluding remarks.

Governing Equations and Discretization

The governing equations employed in the TRAF-

3D.MB code are the compressible Navier-Stokes equa-

tions; i.e., the continuity equation, the momentum equa-

tions, and total energy equation (see, e.g., l:tef. 12).
The fluid is assumed to be a thermally and calori-

cally perfect gas. The effect of turbulence on the flow

are modeled by using the Baldwin-Lomax turbulence
model.9,13.

In TRAF3D.MB, all terms of the governing equa-

tions are discretized by using cell-centered finite volume
formulation. A recently developed upwind scheme, the

advection upwind splitting method (AUSM) 11 is used

for the convection terms of the governing equations.
The diffusion terms are discretized in a conservative

fashion using second order accurate, centered finite dif-
ference formulas for the diffusive fluxes. Boundary con-

ditions are implemented using ghost cells (also called

phantom cells or auxiliary cells). At subsonic inflow

boundaries, the fl0w direction, total pressure and total

enthalpy are specified, whereas the outgoing Pdemann
invariant is extrapolated from the interior. At subsonic

outflow boundaries, the static back pressure is speci-

fied but density and velocity are extrapolated. Either

zeroth-order or first-order extrapolation can be used

at the outflow boundaries. All boundary conditions in

TRAF3D.MB are specified conveniently and logically

at run time through NAMELIST input.

The complete details of the governing equations
and discretizations used in TRAF3D.MB will not be

given in this paper. Here, only the formulation of the

AUSM scheme will be given as it represents a modifica-
tion from the discretization that was used in its prede-

cessor, TRAF3D. Readers interested in further details
are referred to Ref. 9 which describes the formulation

used in the original code.
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The formulation of the AUSM scheme for a gen-

eral stationary grid system is as follows: Consider a cell
face with unit normal _ = (nz, ny,nz). The state of

the fluid on the "left" and "right" sides of the celt face

is given by UL and UR, respectively, where

pw
 ,p(e+plp))

and, p, u, v, w, e, and p denote density, x-, y-, and
z-components of velocity, total energy per unit mass,

and pressure. Corresponding to the "left" and "right"

states, define local "directional" Much numbers as

ML ------ MR = --

aL aR

where _ = (u, v, w) and a -- V/'_/p. The inviscid flux

through a unit area of the cell face is then computed as

a function of UL, UR, and _ as

F(UL, UR) = F + + F-

where

F + = M+aDUS, + M+ps,

nz

lZy

F- = M_'aRUR + M_pR

_z

_y

M:+ = +m- + Im+ +m-l)

M[ = l(m + + m- - + + m-I)

f o
m += _i(MD+I) 2

tML

if ML _< -1;

if-l<ML< 1;

if ML _> 1;

MRm- = -¼(MR- 1)2
0

if MR _< -1;
if--l<MR< 1;

if MR >_ 1;

0M + = ¼(MD + 1)2(2 - ML)
1

if Ms, <_ -1;
if-l<ML<l;

if ML _> 1;

1 if MR < -1;¼(MR -1)2(2 + MR) if-l<MR<l;
M_-= 0 if MR>l;

While the AUSM scheme has the much desired

simplicity of flux-vector splitting schemes, its accuracy
has been shown to rival and even exceed that of the

best flux-difference splitting schemes. In Ref. 11, the

AUSM scheme was used to compute high Much num-

ber flows with great accuracy. The flows computed

included a supersonic flow over a blunt body with a

detached shock. In Kef. 14, the AUSM scheme was

used in an early version of the TRAF3D.MB code to

compute a three-dimensional, low Much number flow

in a backward facing step. Again the results obtained

proved highly accurate. Together, the computations

presented in Refs. 11 and 14 demonstrate the versa-
tility of the AUSM scheme and its suitability for use

in computations of complicated internal and external

flows at both low and high Much numbers.

Time Stepping Scheme and

Convergence Acceleration Techniques

Solutionsto the discretizedgoverning equations

are obtained in TRAF3D.MB by marching to steady

statewith a four-stageRunge-Kutta time integration

scheme.9,15Convergence to steady stateisaccelerated

by using (a) localtime stepping,(b) implicitresidual

smoothing;9,15and (c)multigridscheme.9,15"18The lo-

ca/time step sizesare computed consideringboth in-

viscidand viscouscontributions.The multigridscheme

isimplemented usingfullapproximation storage(FAS).

The fullmultigridprocedure (FMG) isalsoimplemented

to generate good initialconditionsfor the finestgrids.

In the currentimplementation ofthe multigridscheme

in TRAF3D.MB, fullweighting isused to restrictthe

finegrid solutionand residualsto the coarser grids,

and tri-linearinterpolationisused in the prolongation

ofcoarse-gridcorrectionsto the finergrids.

The multigridconvergenceaccelerationtechnique

isvery well suitedfor problems that requirehigh res-

olutionof the flow field.The reason for this advan-

tage isthat multigridmethods yieldconvergence rates

that are essentiallyindependent of the number of grid

points.This means that convergence rateson the finest

gridsin a multigridscheme are the same as those on

the coarsestgrids.This resultsin a reduction in CPU

time by a factorofup to 10 compared to computations

on the finestgridalone.

The convergenceaccelerationtechniquesemployed
inTRAF3D and TRAF3D.MB are describedin Ref. 9.

For furtherinformationon the multigridtechniques,see

Refs. 15-18.
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Multiblock Scheme

Multiblock Grid Systems

The TRAF3D.MB code is designed to use multi-

block grids like the one shown in Fig. 1. The grid

system in Fig. 1 illustrates many of the features of

high-quality multiblock grids. The geometry in Fig. 1

is a cylinder confined between two walls. The bold lines

in the grid system indicate an interface between blocks.
The topology of the grid system is an O-grid around

the cylinder that is fitted within an H-grid structure
for the channel. Note the smoothness and orthogonal-

ity almost everywhere in the grid. Note also that in

the grid system in Fig. 1, there are four special points,
singularities, where more than four grid lines intersect.

The occurrence of such singularities is rather typical in

multiblock grid systems for complex geometries. How-

ever, they are generally few and located away from the

boundaries Of the domain where high gradients may be
expected in the solutions. The singularities pose no

special difficulties for most flow solvers. In particular,

no special treatment is needed for the convection terms

in most cell-centered schemes. On the other hand, in

order to ensure conservation in the overall scheme, care

must be exercised when evaluating diffusion terms for

cells (or cell-faces) immediately adjacent to the singular

point.

Implementation

The multiblock capability implemented in TlZAF-

3D.MB is completely general in the sense that no lim-
itation is on the number of blocks or how they can be

connected. For storage, a single one-dimensional array

is used for all the individual blocks, with pointers to the

first element in each block. The code is configured to

automatically order the blocks into memory. If enough

memory is available, all blocks are stored in memory at

all times. Otherwise, the code automatically separates

the blocks into groups or clusters that fit into memory,
one at a time. Block clusters that are not in memory

are saved in a file (SSD or "scratch"). When needed, a
total of three files are used for each level of the multi-

grid scheme, regardless of the number of blocks in the
grid. Two files are used to store the numerical solu-

tion while one file is used to store the grid system and
metric coefficients.

In TRAF3D.MB, ghost cells are used to accom-
plish the necessary communication between blocks in

the multiblock grid system. Transfer of data between

blocks involves loading into the appropriate ghost cells
of each block the data from its neighboring blocks that

the block needs access to. The data transfer is im-

plemented such that if two neighboring blocks reside in

memory at the same time (i.e., belong to the same clus-

ter of blocks), then the data exported by one block is
written directly into the appropriate ghost cells of the
other block. On the other hand, if the two blocks are

not in memory at the same time (not in the same block

cluster), then the data exported by one block is writ-

ten into a special array from where the second block

can access the data when it is brought into memory.

The amount of data that needs to be transferred

between blocks depends on the order of accuracy of the

numerical scheme and the type of difference formulas

being used. In TRAF3D.MB, second order accurate up-

wind differencing is used for most cases. Consequently,

two layers of ghost cells are used around each block in

the multiblock grid system, effectively creating an over-

lap of four cells between neighboring blocks. This over-

lap supports up to third order accurate upwind-biased
difference formulas for all cells in the grid system with-

out reduction in order of accuracy at block interfaces.

M_ltib.10ck/Multigrid Scheme

There are a number of possible ways to implement

a multigrid scheme in the multiblock Runge-Kutta time

stepping framework. The possible choices differ in when
communication between blocks takes place; i.e., when

transfer of data is done to update values in ghost cells

at block interfaces. Ideally, communication between

blocks should take place at all levels in the multigrid

sequence and at each stage in the Runge-Kutta scheme.
Furthermore, communication should take place in the

implicit residual smoothing operation to ensure max-

imum benefit of that operation. While being optimal

for convergence, this ideal approach involves a large
overhead due to transfer of data between blocks and

may not be optimal with respect to overall CPU time

requirements.

To reduce the overhead due to transfer of data

between blocks, a compromise strategy is implemented

in TRAF3D.MB. The strategy is to let blocks commu-

nicate on each level in the multigrid scheme but only

before the first stage in the Runge-Kutta scheme, and

to apply the residual smoothing independently within

each block. This reduces significantly the overhead due
to communication between blocks without significantly

impacting the convergence rate.

Results

To test and demonstrate the usefulness of the

TRAF3D.MB code, solutions to three problems were



computed.Theseproblemsare (a) flow in a linear cas-

cade composed of NACA0012 airfoils. (b) flow around

a cylindrical pin extending between two parallel plates,

and (c) flow of air through a coolant passage inside a
turbine blade of a radial-inflow turbine. At this point,

detailed comparison of the computed results to exper-

imental data have not yet been done. In Ref. 11,

however, results obtained with an earlier version of
TRAF3D.MB for a three-dimensional flow over a back-

ward-facing step were compared to experimental data.

That the numerical results agreed very well with the

experimental data is an indication of the accuracy of

the present scheme.

Flow in a Linear Cascade

The first case to be discussed is a flow in a lin-

ear cascade composed of NACA0012 airfoils. The flow

into the cascade was at zero angle of attack and Mach

number of 0.5. The Reynolds number based on the

speed of the incoming flow and cord length was 106 .

The objective of computing this flow was to compare

the convergence characteristics obtained using a multi-

block grid to that obtained using a single-block grid.

For this purpose, the multiblock grid was created by di-
viding the single-block grid up into three parts. Figure

2 shows the grid system for the cascade - the bold lines

in the grid indicate where the single block was divided

up to create the multiblock grid. The grid consisted
of a 153 x 41 two-dimensional (2-D) grid stacked up

in 33 layers from end wall to symmetry plane to cre-

ate a three-dimensional (3-D) grid. Grid points were
clustered near the airfoil surface and near the end wall.

No-slip, adiabatic wall boundary conditions were ap-

plied at the airfoil surface and at the end wall.

To compare the convergence characteristics of the
multiblock scheme to that obtained by using a single

block, the same full multigrid procedure was applied to
both; i.e., 100 iterations were performed on each of the

three grid levels, starting out with a uniform flow on

the coarsest grid. A three-level %awtooth" multigrid

cycle was used on the finest grid with two iterations

on the intermediate grid level and three iterations on

the coarsest grid level. The convergence history of the

computations is plotted in Fig. 3, whereas contours of

axial velocity components are shown in Fig. 4. As Fig.

3 shows, the convergence histories for the single-block

and multiblock schemes are virtually identical. Note,

the spikes observed in the graph occurred at iterations

101 and 201, when the full multigrid method proceeded
from a coarser grid to a finer one. While the con-

vergence histories were nearly identical, the CPU and
memory requirements for the two cases were not the

same. The multiblock computations consumed about

10% more CPU time than the single block computa-

tions but used about 25% less memory, even while stor-

ing all blocks and grid levels in memory at all times.
The total CPU time for the single-block run was about

30 rain. on a CRAY YMP (single processor), or 8.4 •

10 -s CPU sec. pr. grid point pr. iteration for a three-

level multigrid cycle.

Pin in a High Aspect Ratio Channel

The second solution to be presented is for a flow

around a cylindrical pin extending between the two

main walls in a high aspect ratio channel. The height

of the channel (length of the pin) was taken to be equal

to the diameter of the pin, and the width of the channel
was 16 times the diameter of the pin. Figure 1 shows

the grid system in one plane of the channel. The 3-D

grid system was generated by stacking the 2-D grids. A

total of 33 planes were used from one wall to the sym-
metry plane of the channel. The multiblock grid system
consists of a total of 12 blocks, with 33 x 33 x 33 grid

points in the four blocks in the comers of the geometry

(See Figure 1) and 17 x 33x 33 points in the remaining
blocks. The coordinate system is oriented such that

the x-coordinate is parallel to the main flow direction,

the y-coordinate is from side wall to side wall, and the

z-coordinate is from the floor to the symmetry plane.

The flow conditions were chosen to approximate condi-

tions within a coolant passage of a turbine blade, with
Mach number of 0.2 at the entrance of the channel and

Reynolds number of 3,000 (based on diameter of the

pin and speed of the incoming flow). Turbulent flow
was assumed with the Baldwin-Lomax eddy viscosity

model applied at the main walls of the channel.

Figures 5-8 show the solution for the flow around
the pin. Figures 5 and 6 show the contours of u-velocity,

v-velocity and Mach number in the symmetry plane be-
tween the two ma_.n walls of the channel and near the

wall, respectively. As Fig. 5 shows, the flow separates

behind the pin. The separation point is found to be at

87 ° from the forward stagnation point. Figure 6 shows

that in front and back of the pin the fluid is flowing

away from the pin--opposite to the direction of the

flow in the symmetry plane (see Fig. 5). This flow is

the result of the "down-wash" of the high momentum

fluid in the center plane of the channel after it has im-

pinged on the pin in front _md back. Overall, Figs. 5
and 6 show the excellent symmetry that is maintained

in the solution. This symmetry is an indication of care-

ful implementation of the numerical method of solution

since the flow that is being simulated has a natural ten-
dency to be unsteady and asymmetric. Indeed, if slight



asymmetryisintroducedintothe grid or boundary con-
ditions asymmetry arises quickly in the solution leading

to strong oscillations in the location of the separation

points on the pin and, subsequently, to vortex shed-

ding. No attempt was made to capture this unsteady
phenomenon in the present study since highly refined

grids are needed to accurately capture the shedding of
vortices.

Figures 7 and 8 show the flow in the corner be-

tween the pin and the channel wall. Figure 7 shows the

solution in front of the pin and Fig. 8 shows the so-

lution at 90 ° below the forward stagnation point. The

dimensions that are shown on the axes in the figures

have been normalized by the half-width of the chan-

nel. In the figures, the vertical axes correspond to the

surface of the pin (z-axis), whereas the horizontal axes

correspond to the channel floor (x-axis in Fig. 7, y-axis

in Fig. 8). Together, the figures show the horse-shoe
vortex that forms in the corner between the pin and the

wall. Figure 7 shows the vortex that is created in front
of the pin in the corner between the channel and the

pin due to the down-wash from the mid plane of the
channel towards the channel floor. Figure 8 shows that

90 ° below the forward stagnation pointl the strength
and size of the recirculation has increased.

Flow in radial turbine coolant uassage

The last solution to be presented is for a flow of

air through a coolant passage inside a turbine blade of

a radial-inflow turbine. The geometry of the coolant

passage is shown in Fig. 9. As the figure indicates, the

geometry of the passage is complicated, with important
small-scale features such as the pins that extend from

wall to wall in the passage. The grid system used in

the computations of the flow in the passage is shown

in Fig. 10. The generation of this grid system was
discussed in Ref. 19. Slight modification has been made

in the grid system from that presented in Ref. 19. to

better model the inflow geometry. The bold lines in

Fig. 10a indicate a block boundary in the multiblock

grid. A total of 6 blocks were used with a total of 97,440

grid points. The flow conditions specified correspond to
inflow stagnation pressure and temperature of 1.6 bar

and 300K respectively, and with the back pressure at

the outflow boundary specified at 0.65 times the inflow

stagnation pressure.

Since the smoothness and resolution of the grid

system is substantially inadequate for accurate compu-

tations, only preliminary computations were done using

first order upwind differencing for the convection terms

of the governing equations. However, a grid refinement

study for the first block of the coolant passage grid sys-
tem confirms that the qualitative features of the flow

in the present calcuation are correct.

Figures 11 and 12 show the computed flow field
in the radial turbine coolant passage. Figure 11 shows

the Mazh number in the channel in a surface midway

between the main blade surfaces. As the figure shows,

the Mach number in the channel reaches about unity
near the 180 ° turn in the channel. In the latter half

of the channel--i.e., after the sudden expansion where

the first row of pins is located--the Mach number is

considerably lower and typically around 0.1,

Figures 12 shows the velocity vectors in the mid
surface of the channel. The figure reveals a region of

separated flow right after the 180 ° turn. This is in

sharp contrast to the results presented in Ref. 20 for

the same geometry and the same grid, where no sepa-
ration was predicted. The essential difference between
the numerical methods employed in the current study

and that employed in Ref. 20 lies in the scheme used for
the inviscid fluxes. In Ref. 20, some flux vector split-

ting (FVS) schemes were tested including van Leer's
FVS scheme. In that study, second-order upwinding
was used. The fact that the current AUSM scheme

predicts separation, even with first-order upwinding, is
an indication of the superiority of the scheme over the
older FVS schemes.

Work is currently in progress on generating new

solutions on finer grid systems for the coolant passage

shown in Fig. 9.

Conclusions

Numerical simulations of viscous flows in complex

geometries pose a triple challenge to Computational

Fluid Dynamics. First, grid generation tools must be

capable of generating high quality grid systems with
minimal human intervention. Second, the discretiza-

tions used for the governing equations must be capa-

ble of yielding accurate solutions to flows with complex

physics, such as turbulence, flow separation, large vari-

ations in Mach number, shocks, and high temperature

gradients. Finally, the the flow solvers must be compu-

tationally efficient since a large number of grid points

is typically needed to accurately resolve small features

in the geometries and the flow fields.

In this study, a computer program has been devel-

oped that is capable of accurate simulations of viscous

flows in complex geometries. To handle the complex
geometries, the code uses multiblock grid systems that

can, with the aid of specialized software, be generated

for geometries of arbitrary complexity. The code uses



the AUSMschemeto discretize the convection terms 7

of the Navier-Stokes Equation. This scheme has been

shown to be highly accurate in a varyity of flow condi-

tions. Finally, to achieve the needed efficiency the code 8

uses a multigrid scheme along with other techniques to

accelerate convergence of computed solutions to steady

state. 9

The development of the TRAF3D.MB code is con-

tinuing. Planned and ongoing work includes implemen-

tation of a two-equation turbulence 10
model, implementation of the code on parallel com-

puter architectures, and further validation of the code.
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Figure 1. A multiblock grid system in 12 blocks: An

O-grid topology within an H-grld topology
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Figure 3. Convergence history for viscous flow in a

linear cascade (M = 0.5, Re = 10°, zero angle of

attack)--root-mean-square of density residual versus it-
erations

block 2:57x41 block 3:49x41

block 1"49x41

Figure 2. A multiblock grid system in 3 blocks around
a NACA0012 airfoil in a linear cascade: Bold lines in-

dicate block boundaries--merging of block creates a

single-block C-grid.

Figure 4. Flow in a linear cascade (M = 0.5, Re =

10o, zero angle of attack): Contours of normalized axial
velocity, _, in plane of symmetry, ui = 0.6, Au =
0.075.



- ? 0

? | 4

/

(a) (b)

/ F
(c) (d)

Figure 5. Pin in a high aspect-ratio channel: Flow field in symmetry plane
(a) Contours of normalized z-component of velocity (u); ?4 - -0.4, Au = 0.2.

(b) Contours of Mach number, M; ._ = 0, AM = 0.03.

(c) Contours of normalized 9-component of velocity (r) near pin; _t = -0.7, Ar ----0.14.
(d) Velocity vectors near pin.
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Pigure 8. Pin in a high aspect-ratio channel: Flow field near pin sdjscent to channel floor.

(a) Contours of normalized z-component of velocity (_); zt = -0.008, Au : 0.002.

(b) Contours of normalized ?j-component of velocity (v); _/ -- -0.015, Av = 0.003.

(c) Velocity vectors.
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Figure 7. Pin in a high aspect-ratio channel: Flow field in corner between pin and channel
floor in the s_rnmetry plane front of forward stagnation point.

(a) Contours of normalized z-component of velocity (_); zt = -0.05, Au = 0.005.
(b) Contours of normalized z-component of velocity (_); ri = -0.18, A_ -- 0.006.

(c) Velocity vectors. (d) Grid system.

11



\ i iii;
\ i i i i : o.o125

• ! ! i!ii 00100

.......,, _ i i i i i i i o.ooTs

,., ,, ; / / / / ." / -[
[_..-'" ..-'" .-'" .-'" ._'" .15"" 7/ 8'" _. ..."

;.'....... "_..... ------'.'; .....:...-"..--:.--';..-" .A-- _ 0.0o25

A• ::--,"::::::::::::::::::::::::::::'-'"'_ ........ , 0.0000

-0.0750 -0.0700 -0.0650

..... +'" .: / / i:'_

............... .. _ /' ; 6/;/,

....... -................. ..../,./
-.-. ............. .5 ..... - ...... /," // // ////
;;................:::;:;:.......,--';.--'"...".."/I
..;;.................,.............;._.-.."Yi

....:::::::::::::::::::::::::::::::::::::::
, i , l =i i t . _. / . •

-0.0750 .-0.0700

/:: /

-0.0650

-0.0125

- 0.0100

-0.0075

-0.0050

- 0.0025

;.0000

(a) (b)

•.o.oTso -0.07oo -o.o_o

-0.0125

-0.0100

0.0075

0.0050

0.0025

.0000

__ i

,i_ i"

i

1
I
I
I

Itrill
I I till
I t ltlK
I IIIIN
I I [lib

, . , . _ II l lllE
--.- _ ] I I I I1_

! t!....... . l

-0.0750 -0.0700 -0.0650

0.0125

0.0100 •

0.0075

0.0050

'0.0025

3.0000

(c) (d)

Figure 8. Pin in a high aspect-ratio channel: Flow field in corner between pin and channel
floor in cross section 00 deg below forward stagnation point.

(a) Contours o_ normalized _¢-component of velocity (v); _ = -0.4, A*, -- 0.04.
(b) Contours of normalized z-component of velocity (_v); _ - -0.1, Am = 0.01.

(c) Velocity vectors. (d) Grid system.
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(b)

Coolant passage inside a blade of a radial turbine: (a) A cut-out view. (b) A schematic drawing.

Figure 10.

O
o,

c?

(a) (b)

Grid system for radlal turbine coolant passage--grid surface in the mldplane of the passage:

(a) A two-dimensional view. (b) A three-dlmensional view.
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Figure 11.

(a) (b)

Mach number contours in the mid plane of the radial turbine coolant passage:

M_ = 0.05, AM : 0.075

(a) Overallview. (b) Close up view of 18ffturn.
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Figure 12. Velocity field in the mid plane of the radial turbine coolant passage:
(a) Overall view. (b) Close up view o£ 180 _ turn. (c) Close up view o£ second turn and first array o£ plnfins.

(d) Closep view of last array of pinfins

15



FormApproved
OMB No. 0704-0188REPORT DOCUMENTATION PAGE

Public repotting burden for lhb collection of i_forrnafion _ esli .n_ed.to average t h__r _ fep.ponse, including the titre, for revi_vtng inslruclions, searching existing data $our(j__..,

_h_,_,_g_ r_,'_i.ingthed_ r,e_. _ co,_.._,_..apo.r_,_,n_ !he_,o.. = ,_,or,'_ _,,o _._,,'.n_, ._=.o,ngth_o,_.oe,,e_,,,,_e_,y _._s=p_j., o,
collection of informadion, including suggestions lot reoucmg this ouroen.,, zo wasnlngton Heaoqua_ers ten/Ices, uirec'1otme lorln;.orrnmJon upermx_l..s ano Hepons. __] ___e rosen
Davis Highway, Suite 1204, Ar ington, VA 2;_02-4302. and to the Office of Managemenl and Budget, Paperwork Reduction P.rolecl (0704-0188), washington, u_ L-'U=(.rJ.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1993 Technical Memorandum

5. FUNDING NUMBERS4. TITLE AND SUBTITLE

Development of an Explicit Multiblock/Multigrid Flow Solver for
Viscous Flows in Complex Geometries

6. AUTHOR(S)

E. Steinthorsson, M.S. Liou, and L.A. Povinelli

7. PERFORMINGORGANIZATIONNAMEtS)ANDADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

a. SPONSORINC-uMONITORINGAGENCYNAME(S)ANDADDRESS{ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

WU-505-62-27

8. PERFORMING ORGANIZATION

REPORT NUMBER

E-8140

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM- 106356
ICOMP-93-34

AIAA-93-2380

11. SUPPLEMENTARYNOTES
Preparedfor the 29th Joint Propulsion Conference and Exhibit cosponsoredbyAIAA, SAE, ASME, and ASEE, Monterey, California,June 28--30,
1993.M.S. Liou andL.A. Povindli, NASA Lewis Research Center and E. Steinthorsson, Institute forComputational Mechanics in Prop_ion,
NASA Lewis Research Center,(work funded under NASA Cooperative Agreement NCC3-233). ICOMP Progr-an Director, Louis A. PovineUi,
(216) 433-5818.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 34

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A new computer program is being developed for doing accurate simulations of compressible viscous flows in com-

plex geometries. The code employes the full compressible Navier-Stokes equations. The eddy viscosity model of
Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered f'mite volume discretization

is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute
the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integra-

tion scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local

time-stepping and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses

composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example
results are shown a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high

aspect-ratio channel, and a flow of air in a radial turbine coolant passage.

14. SUBJECTTERMS

Multiblock grid systems; Multigrid algorithm; Upwind differencing

17. SECURITY CLASSIFICATION

OFREPORT
Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

16
16. PRICE CODE

A03

20. LIMITATION OF ABsTHACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 7.39-18
298-102


